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Abstract 

Expressions for the radiation patterns of a slit in an infinite ground 

plane covered by a uniform layer of plasma are obtained.    The slit is con- 

sidered to be infinitely long.    Two polarizations are considered.    In one 

case,  the electric field is polarized across the gap,  and in the other,  the 

electric field is polarized along the slit. 
The effects of anisotropic plasmas on the radiation pattern are also 

studied.    However,   only the non-gyrotropic plasmas are considered. 

The solutions to Maxwell's equations are expressed in terms of spec- 
trum of plane waves in the rectangular coordinate system.    Fourier trans- 

form relations are used to match the boundary conditions.    The-solutions 

are obtained in the integral form,   and the saddle-point integration method 

is used to obtain the far-field asymptotic expression of the solutions. 

The normalized power patterns are plotted for the various cases 

studied,   and the results discussed. 

ill 
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Radiation Pattern of a Slit in a Ground 
Plane Covered by a Plasma Layer 

1.    INTRODUCTION 

When a supersonic missile re-enters the earth's atmosphere, it becomes 

surrounded by a layer of ionized gas. The presence of the ionized gas around 

the re-entry vehicle alters the performance of the vehicle's radiative system. 

The effects of the plasma layer on the attenuation and the shape of the antenna 

pattern are difficult to predict because the plasma layer is highly nonuniform, 
and the geometry of the radiating structure is not always simple. 

The object of this report is to study the attenuation and the changes in 

the far-field radiation pattern due to a plasma layer for a simple radiative 

system,   namely,   a slit in an infinite ground plane covered by a uniform layer 

of plasma.    The geometry is a good approximation to either a horn or a slot 

mounted flush with the body of the re-entry vehicle. 

Assuming that the slit is infinitely long, the problem is reduced to a two- 

dimensional one.    The plasma layer is assumed to be uniform and linear. 

Two different polarizations are considered.    In Section 2, the case of the 

electric field polarized across the gap is investigated.    A limiting case of this 
2 particular polarization has been investigated by Newstein and Lurye.      The 

power patterns are plotted and the features of the patterns are explained in 

terms of simple models. 

In Section 3,  the case of the electric field polarized parallel to the slit is 

studied.    Radiation patterns with anisotropic but non-gyrotropic plasma layer 

are investigated in Section 4. 

(Received for publication,   31 October 1962) 



1.1   Method of Solution 

To solve the problem, the solution of Maxwell's equations is expressed 
as an infinite space spectrum of plane waves in rectangular coordinates. 
Fourier transform relations are used to match the boundary condition at the 

ground plane.    By applying boundary conditions at the other interface, the 
solution of the field is expressed as a Fourier integral.    Finally,  to obtain 

the far-field radiation pattern,  the saddle-point integration method is used 
to evaluate the integral. 

3, 8, 9 
1. 2   Effective Permittivity of a Plasma Medium 

In this section,  the effective dielectric permittivity for the simplest 

model of plasma medium is derived,   and procedures to obtain the permit- 
tivity of more complicated models are indicated. 

Plasma is an ionized gas which is electrically neutral. Since the ions 

are much heavier than the electrons, the velocity of ions due to the applied 

fields is negligible when compared with the velocity of the electrons in this 
model.    The effect of collision is neglected at first. 

Assuming a time dependence of the form e^ ,  Maxwell's equations in 

complex form are given by: 

v XE  = -jco»   E 
II 

V X H   = ja.-en E + J J     0 

(1. la) 

(1. lb) 

J   = pv (1. lc) 

where p is the electron charge density and v is the velocity of the electrons. 

It shall be assumed that the medium being dealt with is homogeneous and that 

the applied electromagnetic fields are not so large as to change appreciably 

the homogeneity of the medium.    In other words, 

'0 constant. 

The equation of motion for the electrons is given by 
dv av   -       Is- w - e(E + v X "oH) (1. 2) 

where e = electron charge and m = electron mass.    With the initial assumption 

that there is no magnetostatic field present, the quantity v X pnH becomes 

second order and is neglected.    The equation of motion in complex form reduces 
to 

jedmv = eE 

-     e E v =-.  
ju;m 

(1.3) 



Substituting this relation into Eqs.   (1. lb) and (1. lc), 

V X H 
_     *V   - 

ja.'£,.E +——   E ■      Ü ] w m 

]^'ef 1  - 
poe 

But p .  = N„e  where N_ is the electron density.    Therefore, r0 0 0 J 

VXH   = iwe. 1  - 
NQe 

me 0 

This gives the effective dielectric constant of 
2 

P ° 
1 

NQe 

"0 
1 - 

(1.4) 

(1.5) 

(1.6) 

where 
N   e~ 
■ 0 

Since the velocity of the electrons is 90° out of phase with the applied 

electric field,  there is no loss [ see Eq.   (1.3)] .    When the effect of collisions 

is appreciable,   the velocity of the electrons is no longer 90° out of phase with 

the applied field.    The effect of collisions is included in the equation of motion 

as a damping term given below: 

m —r— + m v v   = e E dt (1.7) 

where v is the collision frequency.    For such a system,  the permittivity is 

given by 

2 2 

"0 

a.' 

i —2- 
2      2 

v  + a; 
i JL —£  
J    .i      o      2 

,2+. 
(1.8) 

Macroscopically,  the important difference between an ordinary dielectric 

and a plasma medium is that the real part of the permittivity for the plasma 

medium is less than e  .    Actually,  the real part of e    can take on negative 

values. 

If a magnetostatic field is introduced,   then the equation of motion for the 

electrons becomes 

m^   +   mvv   =   e   [E + v   X BQ] (1.9) 

Such an equation of motion gives rise to a tensor permittivity of the following 

form (in the rectangular coordinate system): 



i   "+.i"> 
2 2 

P 
(H-jw) 

2 ju 

(y-t-JU')     + a: 
i + tütei, 

2 2 

1 + (iH-jwj(jw) 

The magnetostatic field is assumed to be in the- z direction in a right-hand 

coordinate system.    The quantity u    is the gyrofrequency and is defined as: 

eB„ 

1. 3   Plane Waves 

In the analysis of the radiation problem, the fields are expanded in terms 

of plane waves.    A brief review of plane waves in semi-infinite medium is 
iu;t 

given here.    In the subsequent analysis,  the time dependence e        is assumed. 
From Maxwell's equations,  the following equation,   known as Kelmholtz 

equation,   can be obtained for the electric field: 

[ V2 + /i£^'2J   E   = 0   , 

where for the rectangular coordinate system 

2 2? 
„2     d 3 a~ 

2 
9y' dz 

(1. 10) 

In general,  the solution to such an equation in rectangular coordinate system 

is given by: 

'(x, y, z) 
A0 (e"jk*x + r^^ie-^yy + r2eJkyy) ( e-

jk*z
+ r3eJkzz), 

where 

'(*, y, z) 

A 
0' 

r.,   T0,   and T    are complex constants (1. ID 

i    2  ,  ,    2  ,  .    2 2 k      +k      +k        =  oi UE x y z 

Consider the geometry shown in Figure 1.    Assume that a uniform plane wave 

impinges upon the semi-infinite isotropic dielectric from a direction making an 

angle 0 with z axis,   and that the electric field is polarized in the y direction. 

With these simplifications, the solution in the free space region reduces to 

= A'   [t 
-jk  z 

z   + r e       . 
-jk  x J  x 

(1. 12) 



where 

A' 

r 
k 

-   constant 

=   reflection coefficient 

+   k 2 
"0   0 

k    sin 9 

k    cos 9 

Figure  1.    Plane Wave in Semi-Infinite Medium 

The first term in Eq.  (1. 12) represents the wave coming toward the dielectric 

wall and the second term represents the reflected wave.    From Maxwell's 

equations the magnetic field components H   and H   are obtained: 

0 

9E 

3z —f-   A' L« 

x 

-jk  z 
r e 

ik  z" 
z 

-ik  x J   x (1. 13) 



and 

J^M 
(i 

3E 
 ■£ 

dx wn A' 
0 

[. 
■jk.,z jk z 

r e 1     -jkxX 
J e (1. 14) 

For this particular polarization,   all other field components are zero. 

Inside the dielectric medium    there is no reflected wave.    Thus, the 

expression for the electric field is given by 

where 

E      = T e 
y 

-i(k'   x+k'   z) 
X z 

T = constant 
1   2        '   ?        2 

k    l + k        = k 
X z 

k     = k sin 9 x 

2 
W   fie 

(1. 15) 

k      = k cos 9 z 

Again the magnetic field can be obtained from Maxwell's equations.    From 

the boundary conditions,  the value of T and T can be obtained,   as well as the 

relation between 9 and 9 . 

For a more detailed analysis of plane waves see Reference 4. 

In this problem,  the solution to Maxwell's equations will be expressed 

in terms of plane waves like those of Eqs.   (1. 12) and (1. 15). 
i t 

In the anisotropic case, there is a different relation between k     and k    . 

A discussion of plane waves in an anisotropic medium is given in Section 4. 



2.    TRANSVERSE MAGNETIC WAVE 

2. 1   Solution in Integral Form 

The geometry for the first problem considered is shown in Figure 2. 

At the gap,  the electric field is polarized in the x direction and the amplitude 
distribution along the gap is assumed to be constant,  as illustrated in Figure 

3, The magnetostatic field is assumed to be zero. 

A very similar problem,   namely that of a magnetic line source in the 
ground plane covered by a layer of plasma,  has been solved by Newstein 

2 
and Lurye. "   The magnetic line source in a ground plane is a limiting case 
of a slit in a ground plane with the slit becoming infinitesimally narrow. 

2 
Contrary to Newstein and Lurye's" method of expanding the solution 

to Maxwell's equations in terms of cylindrical waves, the solution in this 
report is expanded in terms of plane waves in rectangular coordinates. 

However,  the results are the same. 

It is clear from the boundary conditions that for the particular geometry 
and polarization described in Figures 2 and 3 that 

y 
H    = H x z 0 

E      = H 
y       x 

H      = 0 
z 

where the primed quantities represent the electric and magnetic fields within 

the plasma and the unprimea quantities represent the fields in free space. 

FREE     SPACE 

«o Mo 
Z=l 

= 0 

GROUND    PLANE 

Figure 2.    Radiative Geometry for the TM Wave Case 
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a 
2 

a 

Figure 3.    Electric Field at z = 0 for the TM Wave Case 

In the free space region z > 1, the following solution is assumed for the 
magnetic field: 

p» -i(k x + k z) 
H (x. z) = \     a(k   ) e        x z       dk     , 

where ±   ^kn2 - k  2 

0 x (2. 1) 

a(k ) = amplitude function independent of x and z.    Thus, the solution 

is expressed as a spectrum of outward-going plane waves.    If a plane wave 

satisfies Maxwell's equations, then certainly the sum,  or more precisely, 

the integral of such plane waves satisfies Maxwell's equations. 

It should be noted here that along the path of integration,  as k   goes 

from minus infinity to plus infinity, the quantity k   takes on both real and 



imaginary values.   The sign of k   must be chosen in such a way that the 

imaginary part of k    is always negative.    If the positive values are taken 

for the imaginary part,  the integral is expressed in terms of increasing 

exponentials,   and the integral will not converge.    Physically such a result 

is not expected. 

From Maxwell's equations result the following expressions for the 

electric field: 

E  (x,z) *-£±- 
3H 
 1 
9z ■r 

k -j(k  x + k  z) 
-£- a<k ) e       x z       dk 
we»   ' x x 

(2.2) 

E   (x, z) =—— 
]we0 

3H 
 v. 

3x 

r"*   k 
:-\    —f- a(k ) e 

-j(k   x + k   z) 
dk (2.3) 

Inside the plasma medium,  the solution for the magnetic field is repre- 

sented by a spectrum of outward-going waves plus reflected waves as follows: 

H    <„. z! •z -jk   z ,       jk    z' 
b(k x) e + c(k x) e e dk (2.4) 

where 
2 2 A 

k     = (k    -k1   ~)2 

z p        x 

P 0  P 

The propagation constant k    is in general a complex quantity,    The 

quantities b(k    ) and c(k    ) give the complex amplitudes of outgoing and re- 

flected waves. 

The corresponding electric field is obtained from Maxwell's equations: 

3H' 

E x(x, z) 
I €       "3~z 

p 

y 

p u 

9H' 

"      i -Jk   z '        jk zz 
b(k x) e - c(k x) e 

-jk   x      , 
e       x   dk    .(2.5) 

E    (x, z) = —— 
Z ]W€ ax 

^>oo k'    r   , 

D   L. 

-jk    z ,        jk    z 
) e       z     + c(k    ) e     z 

X X 

-jk    x      , 
e       x   dk    .   (2.6) 

There are three unknowns in this problem: a(k  ),  b(k    ),  and c(k    ). 
X X X 

To evaluate them, it is necessary to have three equations relating these 

quantities.    The boundary conditions will provide the necessary relations. 
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Consider the boundary condition at the ground plane.    Here the ampli- 
i 

tude of the tangential component of electric field    E    ,  as function of x is 

as shown in Figure 3. 
t 

Equation (2. 5) for E      reduces to the following at z = 0: 

E    (x x c, 0]= V 
P   L 

b(k - c(k x) 
"Jk *x 

e dk (2. 7) 

Equation (2. 7) is a familiar expression for the Fourier transform between the 
i 

k     domain and the x domain.    It can be seen readily that the quantity 

b(k x) - c(k x) 

is the Fourier transform of the electric field amplitude distribution.    E    (x, 0). 

The Fourier transform of a rectangular pulse is a simple one,  and thus, the 

transform, will be equated to the above expression. 

b(k x) - c(k x; 
2*-E0a sin k xT 

x 2 

(2.8) 

Equation (2. 8) gives one of the three required relations,   and the other two 

relations are obtained at the interface between the plasma and the free space. 

At the interface both the tangential component of electric field and that 

of magnetic field must be continuous.    For the magnetic field,   Eqs.   (2. 1) and 

(2. 4) at z = 1 can be equated to obtain: 

£ a(k  ) e      z    e"jkxX   dk 

•£k>-jk'^ c(k x) e 
*y,.. Jk   x 

dk (2. 9) 

Similarly,   for the tangential component of electric field Eqs.   (2. 2) and (2. 5) 

can be equated and thus. 

k -ik 1    -ik x 
-± a(kx) e      z   e      x 

0 
dk 

p°°   k 
b(k x) e 

-Ik 
(2. 10) 

- c(k x) e 
-Jk J _ik   x  ji' e  •'    x      dk 

It can be shown that, in order for Eqs.   (2. 9) and (2. 10) to hold, the 

auantity k     must be eaual to k This result is not surprising because it 

shows that the phase must be continuous at the boundary,  which is also the 

requirement from Snell's law.    Since the integral now has the same variable, 

the quantities inside the integral can be equated,  noting that: 
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P 

= Vk - k 

Thus,  from Eqs.   (2. 9) and (2. 10) results: 

-jk  1 , -jk'   1 jk'   1 
a(k  ) e      z     =   b(k    ) e        z    +    c(k    )   e      Z 

x x x' (2. 11) 

and 

a(k  ) e 
-jk  1 

b(k J e 
-jk   1 '        ^z1 

c(k x) e ]■ (2. 12) 

Equations  (2.8),   (2. 11),   and (2. 12) give three equations relating the 

three unknowns.    In solving the equations for a(k ), 

a(kx) 
27rEA a sin k    -=- 0 x 2 

jk 1 .    z 

kz€0 cos k    1 + i—: sin k    1 
z       

J   k e z 
z  p 

(2. 13) 

Since k    ,  k   ,   and k     can be expressed in terms of k  , the right-hand side 
x      z z r x 

of Eq.   (2. 13) can be expressed completely in terms of k  . 

The exact solution in integral form has now been obtained [ see Eq. 

(2. 1)] .    Evaluation of this integral for large values of x and z by the saddle- 

point method is used to obtain the asymptotic  expression for the far-field 

radiation pattern. 

2. 2  Saddle-Point Method 

The saddle-point integration method,   also known as the method of 

steepest descent,  is a technique to obtain an asymptotic approximation for 

large values of z to complex integrals of the type 

f      i \    zf(s)   . \     g(s) e ds 
J c 

where g(s) and f(s) are independent of z. 

In this problem,  it is more convenient to change from the rectangular 

coordinate system to cylindrical coordinates.    Thus, 

k    = k    sin w 
x        0 "      ' 

k    = k_ cos 0 z        0 T 

dk 
dk    = -j-^- 

x      acp du>   = kp cos <p   dtp 
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x = r sin 9 

x = r cos 0 

a(k ) = a(k_ sin cp) 
x 0 

where ip, the new variable of integrations,  refers to the direction of wave 

propagation,  whereas 9 refers to the angle of observation point.    Although 

both 9 and cp are measured from the z axis,  9 is independent of (p just as 

x is independent of k   in the integration. 

Substitute these quantities into the integral 

-j(k  x + k  z) 
= \        a(k )  e 

y 

and obtain 

r> o° -j(k  x + k  z) 
H    = \        a(k )  e       x z       dk 

y   J.„       x > 

p -jk r(cos <p cos 6 + sin <p sin 9) 
H    = \     a(k_ sin <x>) k   cos w   e d<p 

y     Jc        ° 0 

= \     a(k_ sin cp) kn cos <p   e"jk0r [ cos^-<fi^dlf>     , (2. 14) 

As the original variable of integration   k    goes from minus infinity to plus 

infinity;  the new variable cp takes the path C shown in Figure 4.    The shaded 

area in Figure 4 is the mapping of the proper sheet of the k   plane into the 

complex ip plane.    When mapping the k    plane into the cp plane,  it must be- 

noted that the imaginary part of 

k    = k_ cos cp 
z        u 

must be negative for the reason of convergence.    This condition is satisfied 

in the shaded region. 

The next step of this procedure is to distort the path of integration.    If 

the path C is continuously deformed into another path B in such a way that 

it does not sweep over a singularity of the integrand,  then 

I- B 

In order for the integral to converge,  it is also required that the two ends of 

the path stay within the shaded region. 

The object of the saddle-point method is to choose a path of integration 

so that the quantity 

5XP rR
e
(~JkOr cos{9-W )J 

has a maximum    or    more precisely    a saddle-point,  and falls as rapidly as 

possible on either side of this maximum.    Also along the path near the maxi- 
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mum the imaginary part of -jk-r cos(Q-tp) is to be constant,  or in other words, 
the phase of the quantity 

e-jkQr cos(O-v) 

is to be constant along the path.    This second condition insures that the inte- 
grand does not fluctuate rapidly between positive and negative values. 

Figure 4.    Complex  tp Plane 
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The saddle-point occurs when 

^- [-jk0r cos<9-<,)]   =0 

or, in other words,  at <p = 9. 
If 

<P = <P1 + j<P2 

then 

-jk r cosO-sP.-j^) = k
n
r     sinh fo  sin(e"'/'1) _j cosh <p   cos(Q-ipS\ .(2. 15) 

The imaginary part of Eq.   (2. 15) is to be constant along the new path,  and the con- 

stant can be evaluated at the saddle-point <p    = 8,   <p    - 0.   This gives the equation 
for the path 

cosh <p   cos(9-<?..) = 1 (2. 16) 

It should be noted that in the range -7r<<a<7r, there is more than one possible 

path which satisfies Eq.   (2. 16),  but only one stays within the allowed region in the 
complex <p plane.    From Eq.   (2. 16), therefore, 

cos(9-<p.) = (cosh <p„) (2. 17a) 

and 

sin(9-<pj = ±   1 - cos   (e-c/OP = ± tanh <p„. (2. 17b) 

The minus sign must be taken in front of tanh <p   in order to stay on the allowed 
region. 

If Eqs.   (2. 16) and (2. 17b) are substituted into Eq.   (2. 15), then, 

-jk r cos(0-<p) = -knr 
0 0' 

sinh  ip 
 M  

cosh <p2 
(2. 18) 

Now there is a new variable <p „ which goes from minus infinity to infinity. 

It can be seen that if r is very large, the quantity 

exp -k„r 
sinh  <p~ 

0    cosh<pr 

has a maximum at cp9 = 0 and decreases very rapidly on either side of the saddle- 
point.   Thus, the major contribution to the original integral comes from a small 

region of the path near the saddle-point.    Therefore, the following approximations 

near the saddle-point may be made: 
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and 

.   .2 
sinh  ip 2 

 ;—    — v> cosh (p.,      Y 2 

dip  = -^—   dcp, + -r*-    d<^„ 
3(^1      Yl      d<p,} 2 

Bfljj   a<?2       3^2J av,2 

il + j]   d</>     =    «/2   ej7r/4   d ̂
2 

By inserting these relations into Eqs.   (2. 18) and (2. 14), it can be seen that 

the major portion of the integral is given by 

r~      iTT/4        fU "Jk0r        "V^ 
H   =\2eJ   '      \      a(k   sin <p) k   cos <p e e d<p (2.19) 

y J _u      u u ^ 

where u is a point on the path near enough to the saddle-point so that 

9 
sinh"u 2 
cosh u 

is a valid assumption. 

If r is made very large, the region -u<<p„<u can be made very small 

and still be a good approximation to the integral.    If the region -u<<p  <u is 

small, the following further approximation within the region can be made: 

a(k sin ip) cos <p ~ a(k sin 8)cos 6 

The quantity 

a(kn sin 9) cos 9 

can now be taken outside the integral and the integral reduces to 

-ik„r   r>u       , 2 
» \' 2   eJ k„ cos 9 a(k„sin 8) e 

y 
H    « \ 2    eJ7r/    kn cos 9 a(knsin 9) e \      e     0r<P2d(p„.      (2.20) 

y 0 0 J_u 
r2 

It can be seen that if the limits of integration are extended from minus 

infinity to plus infinity, the value of the integral changes very little because 

r is assumed to be very large.    Thus the integral is approximated further 

to the following: 

r—    ITT/4 ~ik0r C°°      "^2  r 

H   « \I2   eJ   '   kn cos 9 a(k. sin 6) e \        e"u dq>„.     (2.21) 
y 0 0 J^ 2 

The integral above is a well-known definite integral and thus the approximate 

solution is 
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where 

Jknr 

J ff'4 kQ cos H   a(kQ sin 9)   e "" 

a(k   sin 9) 
r k a 

2TTE    a sin(-|— sin 9) 

V kn cos 9  —■=— sin 9       i  c 

jk. 1 cos 9 

eok' cos k    1 + i—; r z        e k_ cos 9 
P ° 

(2. 22) 

sin k   1 
z 

/,    2  ,    2    .   2„ 
= \k    -k      sin 9 

P       0 

In the analysis, the effect of poles of integrand in the complex <p plane has 

been disregarded.      The contribution from the poles can be included in the usual 

manner,  but can be neglected in the far-field analysis of r approaching infinity 

unless the pole lies on the real axis of the cp plane.    In this problem there was 

no pole on the real axis,  and thus the analysis is valid. 

The expression for the electric   field can be obtained in a similar manner. 

If E    and E    are combined to obtain a single component E_, then 

E9 = 

0 
€7 H 

0      5 
(2. 23) 

2. 3  Power Pattern 

The power pattern can now be obtained from the relation 

-■2 

For the case of lossy plasma layer,  the expression for the power pattern be- 

comes quite complicated.   A useful form of power pattern cannot be obtained for such 

a case,  and thus only the expression for lossless plasma will be given here. However, 

the equations for the lossy plasma cases are presented in the Appendix. 

Since the quantity k     in Eq.   (2. 22) takes on real and imaginary values 

for the lossless case,  it is convenient to give two expressions for power 

pattern;  one valid when k     is real,  and the other valid when k     is imaginary. 

Let 

i' /T~2     ,2.2. k       = vk      - k„    sin    9 

where 

J: k„    sin   9 - k 0 p 

k      = kn P 0 
1 - 
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Then 

and 

k     = k 
z zr 

for cos 6 > —fi- 

ll -p 
k     = ik    . for cos 6 < —*- 

Z Zl w 

It should be noted that when the plasma layer is lossy, the quantity 

k     is complex instead of pure real or pure imaginary. 
z ' . 

By substituting the relations above for k     into Eq.   (2. 22),  the following 

expressions for the normalized power pattern are obtained: 

2 
9 ' 

*n--H 
sinV 2  
k0a sin 9 2    ' cos    k      1 + zr 

2. '     2 
0       zr  

2.    2       2Q e    k_   cos   9 
P     0 

2    ' 
sin   k      1 zr 

(2. 24a) 

for 

and 

for 

e>-£- 

1 sin\   2              / 

2 

r k a 
—j- sin 9 

1 
2    ' 

2 , '     , _,   £0        zi i    k    .1 + 
zi 2,2 2D e      k„    cos  9 

P      ° 

sinh k    -1 

(2. 24b) 

9<-^ 

In normalizing the power pattern,  it was assumed that the voltage across the 

gap is constant for all cases. 
2 

Since cos    9 is never greater than unity,  only Eq.   (2. 24b) is needed 

when    p   is greater than unity.    However,  when p_ < 1 there is a definite 
OJ , w 

angle at which k     changes from real to imaginary quantity.    This angle will 

be called the cutoff angle.    The cutoff angle is given by 

e 
1   w 

In Figures 5 and 6, some radiation patterns are plotted.    In plotting them, it 

was assumed that the slit was infinitesiinally narrow.    This assumption 

gives the relation 
k„a 

sin 9 
-  1 sin 2 

- sin 9 

V sin 9 
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In Figure 5,  power patterns are shown for various values of -^- with 

fixed plasma thickness.    The cutoff angles are indicated on the graph.    An 

interesting feature 01 the patterns is that when    p  < 1, the patterns have 

peaks just inside the cutoff angle.    For the values of 9 greater than the cut- 

off angle,  the amplitudes decrease rapidly with increase in the angle, 
u 

When—2 > 1, the amplitudes of the pattern are greatly attenuated.    This 

effect is due to the propagation constant in the plasma    given by the expres- 

sion 

k    = k_ 
P       0 • -r-4]4 

which becomes imaginary.    Thus the waves are attenuated exponentially 

within  the plasma layer. 

-80»   -70*    -60*    -50*   -40'   -30*    -20*    -10 

Figure 5.    Power Patterns for Various Values of—E   (TM Wave Case) 
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Figure 6 shows the power patterns plotted as functions of plasma layer 

thickness.    For the particular value of _P   chosen,  the cutoff angle was 37°. 
w 

Since the power patterns are symmetric in 9,  only half of each pattern is 

plotted.    The peaks fall approximately at the same angle    and they are 
higher for thicker plasma layers. 

Pn(fl) 

Figure 6.    Power Patterns for Values of knl  (TM Wave Case) 

Since the ground plane is never infinite in practice,   an important 

relation is the attenuation as a function of P for 9 = 0.    The plot of attenua- 
te                                                            w 

tion versus E with the plasma thickness as a parameter is given in Figure 
CO 

7. 
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ATTENUATION    (DB.) 

10 

20- 

30 

w AND THE VOLTAGE 

ACROSS THE GAP ARE 

HELD   CONSTANT. 

0.5 1.0 
-I— 
1.5 

"1— 
2.0 

w 
_P 
ÜJ 

Figure 7.    Attenuation vs. —" at 9 = 0 

2.4  Plane Wave Model and Transmission Line Analogy 

To get some physical feeling for the problem,   consider the following 

system. 

Let a fictitious plane wave source at z ~ 0 which constrains the x com- 

ponent of the electric field to be of the form 
-jk Y sin 9 

e    (z = 0) = En cos 9 e x 0 

where k. =    üJ^//^Te7   .    (Small letters are used to denote the field compo- 

nents for the plane wave model. ) 
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-r- ■  
FICTITIOUS    SOURCE 

Figure 8.    Plane Wave Source 

If  freedom  to choose 0 is assumed,   and the source extends from 

x = -<*> to x = «o, then such a source propagates a plane wave in the 9 
direction with the magnetic field given by: 

E-E0MM< NU 

0      -jk_ (x sin 9 + z cos 9) v0 (2. 25) 

Thus for any 9 the choice is between  - TT/2 and TT/2;   the source propagates 

a plane wave with the electric field amplitudes equal to E_. 

Now suppose that a slab of plasma is placed against the source as 

shown in Figure 9 

>Z = l 7777777777777777777777^77777777^7777777777777^. 

PLASMA 

'////////////////////////pi//////////////////////// 

PLANE   WAVE   SOURCE 

Figure 9.    Plane Wave Source with a Plasma Slab 

To solve for the fields,   assume plane wave solutions in the two regions 
of interest.    Inside the plasma layer there is a solution of the following form: 
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h     = H o  L: 

-jk    z   + r e 
jk    z" -ik    x J    x 

(2. 26a) 

, 3h H nk 
, mil Z    =     °      Z 

J     P P     "~ 

"Jkzz     _    Jkzz       "Jkxx 

e -Te e (2. 26b) 

9h -H'  k' 
0    x 

z      ioi£ 9x 
J      P 

-ik    z ik    z 
e +   r   e 

-ik    x J    x 
(2. 26c) 

where 

k       =   k   sin 9 
x p 

k       =   k    cos 0 
z p 

In the region z >  1, 

h    = Hn e 
y      o 

-i(k z  1 - k  x) J    z x 

H  k -   k  z + k  x 
-     0   z       „        z x e —-     e 

X Cl>€- 

(2. 27a) 

(2. 27b) 

"H0kx        -j(k  z + k x) 
e    =        J    z x 

z        u,en     e (2  27c) 

where 

k    = k. sin Ö 
x       0 

k    - k. cos 9 z        0 

At z = 0. the following relation from the boundary condition on the x 

component of the electric field results: 

-jk x sin 9       H _k -jk    x 
En cos 9 e       ' =  ^—— [ 1 - r]   e       x 

0 cue L ' 
P 

Since the relation must hold for any x. then 

k„ sin 9 = k     = k    sin 9 0 x       p 

and 
i     t 

H    k 
(2.28) 
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From ths boundary conditions at z = 1 , the following relations are 

obtained: 

and 

HQe 
-jk 1 

e + r e (2. 29) 

k -jk  1        H'   k'     r -jk'   1 jk'   1 
„       z z  0 z J    z ,-    J     z H„——:—  e = —— je -   r e 0  ue 0 u>e (2. 30) 

There are three equations (2. 28),   (2. 29),  and (2. 30),  and three unknowns 

H'0,   H   andT.    Solving for H  : 

■ft-      JV 0        0      P0     e 
1 

k ze0 cos k zl + jk  -      sin k    \ 

(2. 31a) 

Thus the amplitude of the magnetic field in the free space region is given by: 

fe 0   Eo 

'■ J^~2 : 

2.'      ,    k z  c0 .   2 , • 
cos    k    1 + it—s-   sin   k    1 z    Tv z 

z     p 

(2. 31b) 

The interesting part of this result is that as far as the 0 dependence is 

concerned,  the expression for Hn is exactly the same as the far-field 

pattern obtained for the narrow slit case [ see Eq.   (2. 22)] .    The similarity 

of the results suggests interpretations for some features of the power pat- 

terns in terms of the plane wave model.    However,   in order to make the 

interpretations easier,   analogies can be drawn with the transmission line. 

The transmission line analogue of the plane wave model is found to be 

as shown in Figure 10.    (See Reference 4 for transmission line analogues 

of plane waves. ) 

:0coseQe'* "0     01«. 

ß''k't 

Z = — 

ß  -k, 

Z«0 

Figure 10.    Transmission Line Analogue 
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The analogue gives the z variation of the field components e    ,  h    , 

e   and h  .    If the system is solved for h  , then x y y' 

h    =E0JS 
-jkz(z-l) 

.'       ,   .k zC0     .       ■   , cos k    1 + -\-, sin k    1 z       J k  e z 
z  p 

The power propagated per unit area can be computed from 

.*# P =   z 

When e = 0, then 

h   I  = E 
y 

JS. 
0    M 0 

Let us investigate the peaking effect observed in Figures 6 and 7.    It 

should be noted that these peaks are greater in amplitude than the case with- 

out the plasma slab. 
From Eq.   (2. 31), 

y 0   M 

1 
2       2 

Z2  .°2    )sin2*zl 

k  " e z      p 

I / 0 
Thus |h I can become greater than E v— 

y o n 0 
when 

0<^^-   <    1     . k  e 
z  p 

This condition is indeed satisfied in the range 

—|—\<   9 <   6 
p   o 

and within this range of angles, the power radiated is greater than the "no 

plasma" case. 

Similar relations are obtained for H in the narrow slit problem f see 

Eq.   (2. 22)] . 

In terms of the transmission line analogue, the condition 

k     «n z 0 
k  e 

z  p 
<    1 
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is analogous to 

Z 
0 

or 

7.       < 7. 
^ 0      ^0 

By adding a transmission line of lower characteristic impedance to a matched 

line, the impedance seen from the source is always reduced.    Hence,  more 

power is delivered to the load. 

The transmission line analogy also shows why fluctuations   in the power 

pattern for thick plasma layers are observed.   As 8 changes from 0 to 6 , 
I c 

the propagation constant k     in the transmission line analogue changes from 

k   to 0.    Thus when k 1 » 1, the length 1 changes from many wavelengths to 

zero wavelength as 6 is changed from 0 to 9  .    In other words, the impedance 
seen from the source fluctuates as 9 is varied and fluctuations in the power 

pattern result. 

When the angle 9 is greater than 9      or when     ^ > 1, the transmission 

line analogy no longer holds.    In such a case,  the plane waves within the 

plasma layer are non-uniform and are attenuated in the z direction. 
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3.    TRANSVERSE ELECTRIC WAVE 

3.1   Solution 

Now consider the case of the electric field polarized along the gap in y 
direction.    The geometry for this problem is shown   in Figure 11.    The field- 

strength distribution across the gap is assumed to be co-sinusoidal as shown 

in Figure 12.    This particular configuration corresponds to a waveguide 
opening into half space with the waveguide excited by TE-n mode. 

FREE     SPACE 

«oMo 

Z=0 

GROUND    PLANE 

Figure 11.    Radiative Geometry for the TE Wave Case 

Ey(x,0) 

Figure 12.    Electric Field Amplitude Distribution at z = 0 for the 
TE Wave Case 
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The method used to solve this problem is very similar to the one used 

in the previous problem. In this particular polarization and geometry, it 

can be seen that 

E    = E    = H    =0 x        z        y 

E      = E      = H     =0 
x z y 

There is only one component of electric field    and in the free space it is 

represented by the following integral: 

p°° -j(k  x + k  z) 
E    (x, z) = \       a(k ) e       x z     dk (3. 1) 

y J-oo     x x 

The solution above is identical to the one assumed in the previous problem 

except this time the solution is assumed for the electric instead of magnetic 

field.    The corresponding magnetic field components in free space region are 

given by the following relations: 

, 8E r«> k -j(k : 
H    (x, z) =4-       -5-2 = -\    —S-   a(k ) e       x 

-i(k x + k z) 
dk (3.2) 

and 

3E 
Hz(x-Z)=3^ St 

p»     k i»    k -j(k x + k z) 
a(k ) e       x z     dkv .        (3. 3) 

Inside the plasma medium, the solution is represented in terms of out- 

going waves and reflected waves: 

E (x, z) = J        |_b(k x) e + c(k x) e 
-jk   x     , 

; dk x   (3. 4) 

and the corresponding magnetic field is given by: 

8E' 
H    (x, z) = T= s- 

x ]WM0      3z 

-« w"o 

-jk    z ,        jk    z 
) e       z    - c(k x) e     z 

]-jk   x     , 
e       x   dkx 

(3.5) 
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, 3E 
H    (x, z) =-£i j5-£ 

z ju>0       dx 

r°° k x  T  '    "jk zz      '    Jk'7
zl "Jk'xx  ' = J..-Si^-  K x> e +C(kx)e     Z   Je dkx- 

(3.6) 

At the ground plane the tangential component of electric field,   E    (x, 0), 

must be 0 everywhere except at the gap where the amplitude distribution 

becomes co-sinusoidal as discussed earlier.    Equation (3. 4) for the electric 

field becomes at the ground plane: 

c"  r   •        '  1   "Jk vx 

E    (x, 0) = \ b(k    )+c(k   )      e       x     dk (3.7) 
y ^_oo xj x 

which indicates that the quantity 

b(k'   )+ c(k'   ) x x 

is the Fourier transform of the co-sinusoidal electric field amplitude dis- 

tribution.    By equating the Fourier transform to the expression above, then 

'    a 
r     i i    -\ 2,rE    cosk    , 
b(k    )+c(k    )]    ■ ^ p— (3.8) 

Equation (3. 8) gives one of the three required relations to solve for a(k ). 

At the interface between the plasma and the free space continuity, 

conditions on the tangential components of electric and magnetic fields 
i 

result.    Thus,  the two electric fields E    (x, 1) and E  (x, 1) are equated and 
i y y 

also the two magnetic fields H    (x, 1) and H  (x, 1).    In equating them,  it 

can be seen again that k     must be equal to k .    The equality provides the 

equation of the quantities inside the integral as in the previous problem. 

By equating Eqs.   (3. 1) and (3. 4) at z = 1, then 

-jk 1 ,        -jk'  1 ,       jk   1 
a(k ) e      z   = b(k    ) e       z   + c(k   ) e     z (3.9) 

X X x 

for the electric field continuity.    For the magnetic field continuity relation, 

from Eqs.   (3. 2) and (3. 5) results 

-JV     '    f , ' »   "jk -1        ■ •   jk -1' 
, j      z   = k        b k   ) z       x z   L       x 

k   a(k ) e "  z   = k'     fb(k'   ) e "    "   - c(k   ) e     *   I (3. 10) 
Z X Z     J^ X X J 

Equations (3. 8),   (3. 9) and (3. 10) give three equations and three unknowns 



enabling us to solve for a( k ).    By solving the equations for a(k ),  there 
results 
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2irE   cos k 

»**>• (jy.Vj 
x   2 A1 

L 
kz cos k    1 + i—r-   sin k   1 z - 

z 

(3. 11) 

As before,  Snell's law allows the quantities k    ,  k    and k _, to be expressed 
in terms of k  . x 

The far-field approximate expression for the electric field can be ob- 
tained by the saddle-point method,   and the result is as follows: 

E   « 
y       K0 

\T    eJ k„ cos 0 "kTF cos 0   a(k„ sin 0) e 
■JV 

(3. 12) 

where 

k r » 1 K0 

If Eq.   (3. 11) is used to evaluate a(k   sin 9),  the following substitutions can 

be used: 
t 

k    = k     = k. sin 9 x x       0 

k    = k.  cos 9 z        0 

kz=   [k
p
2 - \2 «in2 e] * 

3. 2 Results 

The normalized power pattern can be obtained from the relation 

Again,  only the lossless case is considered.    In the lossless case, the 
t 

quantity k    takes on either real or imaginary values as in the case of the 

transverse magnetic wave studied in the previous section.   Thus two 

expressions are given for the power pattern. 

Let 

k*      =   |i zr k
p

2" ko2 sin2 * il fo r k   > k„ sin 9 
P       0 
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and 

where 

k'   . =   \kn
2 sin2 G - k  21 

zi       |_ 0 p J 

k    = kn 
P       0 

1 - 

for k    < k    sin 0 
P       0 

Then the following expressions for the power pattern can be obtained from 

Eqs.   (3. 11) and (3. 12).    The power is normalized so that the electric field 

amplitude between the slit is kept constant for all cases.    Furthermore, 

the value of — is given to the power radiated in 6 = 0 direction for the "no 

plasma" case. 

for 

n     r    \ a/ 

k    >   k    sin 6 
P 0 

for 

cos\   2     sin 0 

(I)' ,2.2. 
k_    sin    8 

2 r 
2 

cos   9 
2       2 2   ' 

9    i k„  cos"9   sin k      1 
cos    k      1 + -° — zr 

zr T 

zr 
(3. 13a) 

and 

n     r \a.) 

:os y—?- sin 9 J 

©' i    2    •   2 a - k.    sin    9 

2 
cos    8 

cosh   k    .1 +1 
zi 

cos e 
sinh   k    .1 

zi 

(3. 13br 

k    <kn sin 9 
P        ° 

If the plasma layer is lossy,  it is necessary to use 

2 

1 + 
0 (H-jw)jw 

In such a case,  k     is complex    and a simple expression for to obtain k 

power cannot be obtained.   However,  the exact expressions.for the lossy plasma 

case are given in the Appendix. 

For the particular electric field polarization considered in this section, 

radiation from an infinitesimally narrow slot is not possible.    Thus,  for 

the calculation of the radiation pattern,  a value of . 8 was assigned to T- , 

the ratio of slot width to free space wavelength.    The value assigned is a 

typical value for the ratio of waveguide width to free space wavelength for 

a TE10 waveguide mode. 
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The radiation patterns are shown in Figures 13 and 14.    Unlike the 

transverse magnetic case treated in the previous section, the power pat- 
tern without the plasma layer is not omni-directional. 

-80*   -TO*   -60*   -50'   -40'    -30*    -20*    -10' 10»       20*     30'     40»     SO'     60*     TO*      80* 

Figure 13.    Power Patterns for Various Values of _£. (TE Wave Case) 

P.(») 

u*o 

-80"   -70*    -SO*   -SO*    -40*   -30*      20*     -10" 10*      20*     30*     40*     SO*    60*     TO*     80* 

Figure 14.    Power Patterns for Various Values of k.l (TE Wave Case) 
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Again,   analogies with the transmission line can be drawn as was done 

in Section 2.    However,  the characteristic impedances of the equivalent 

transmission lines must be re-defined.    For instance,  it is necessary to 

WM0 kz identify Z- with-r    instead of —'-— .    (See Figure 10 and the subsequent 
z 0 

analysis. ) 
t 

Since the quantity k   /k     in the denominator of Eq.   (3. 13a) is always 
z       z | 

greater than unity for real values of k    , the radiated power never exceeds 

that of the "no plasma" case.    As a result,  peaks are observed whenever 

k   1 = nir where n is a non-zero integer.    Whenever k 1  < it,  the only peak 

is the one at 6 = 0 and the power pattern decreases monotonically with 9. 
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4.   ANISOTROPIC PLASMA 

4.1  Introduction 

In the presence of a magnetostatic field, the plasma medium becomes 
8   9 anisotropic.    '      In general,   with the magnetostatic field in the z direction 

in a right-hand rectangular coordinate system,  the relative dielectric 

permittivity can be described by the following tensor (see Section 1. 2). 

1 + 

 2 T 

(i>+jo>)   + a>. 

(y+ju>)   +<*V J^ 

3^ 
1 + 

<y+ju) 

7T.   ^2 7     2 lw 

1 + 
(y+juKja)) 

Because the off diagonal elements of the tensor are complex quantities, 

the electromagnetic waves in such a medium propagate in a very complex 

manner.    Thus only the special case of a very high magnetostatic field is 

studied. 

When the magnetostatic field becomes very high, the dielectric tensor 

approaches the following expression: 

0 

0 

u 

(lH-ju>)(ju)). 

The off diagonal elements go to 0 and the only remaining element different 

from the free space permittivity is the one associated with the direction of 

the magnetostatic field vector. 

In the analysis to follow,  it is assumed that the magnetostatic field is 

strong enough so that the above tensor is a valid representation. 

4. 2 Propagation in Anisotropic Medium 

At this point,  an investigation of electromagnetic wave propagation in 

an anisotropic medium is appropriate. 

Consider the geometry shown in Figure 15.    The space is filled with 
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an anisotropic dielectric which can be described by a dielectric tensor of 
the following form: 

Assume that a uniform plane wave travels in the 8 direction and per- 
pendicular to the y axis,   and that the magnetic field is polarized in the y 
direction. 

Since the medium is non-gyrotropic,  this configuration is as follows: 

H    = H    = E    =0. x z y 

From the equation 

V X "R   = JMgJE , 

we obtain the relations 

E    = 
1 9H 

x     i w e 3 z J      x 
(4. 1) 

and 

3H 
E    = z       itoe 9x J      z 

(4.2) 

The other curl equation 

V  X E~ = -jwpnH 

yields the following relation: 

3E 

y      JWM, dz 

dE 

dx (4.3) 

By substituting Eqs.   (4. 1) and (4. 2) into (4. 3), the following partial dif- 

ferential equation for H    is derived: 
y 

e u   2 
x      dz 

2 ,     a H _i_   y. 
ez        „2 

ox 
(4.4) 

The general solutiori to such an equation is given by: 
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-jk x jk x 
H    = A I e      x     +   Rj e 

-jk  z jk  z 
e      z     +   R? e    z 

which,  when substituted back into the equation,   gives: 

0  x "oe
z 

(4.5) 

Equation (4. 5) is the relation that must hold between k    and k   in the mode 
x z 

of propagation considered. 

The propagation constant k,   as a function of 9,   can be obtained by 

substituting k    = k sin 9 and k    = k cos 9 into Eq.   (4. 5).    It is found that 

k = 

r 2 

x   z     ^C 

e    cos    9 + t"    sin" Lfcx 

Figure 15.    Plane Wave in Anisotropie Medium 
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4.3   Solution 

The problem of finding the radiation pattern with the anisotropic plasma 

is approached in much the same way as in the previous cases.    It is seen that 

there are only two interesting configurations.    In both   cases,  the polariza- 

tion of the electric field at the gap is in the x direction as in the problem of 

Section 2.    In one case,  the magnetostatic field vector is in the z direction, 

and in the other,  it is in the x direction.    Any other combination of magneto- 

static field  direction and electric field polarization reduces either to the 

case with no plasma or to the case already studied    due to the fact that two 

of the diagonal elements of the tensor have the value of e  .    Thus,  only the 

two cases mentioned are considered. 

The geometry and the excitation of this problem are the same as de- 

scribed in Figures 2 and 3.    Since the plasma medium is non-gyrotropic,  it 

is expected that 

H    = H    = E    =0 
x        z        y 

H      = H      = E      =0 
x z y 

assuming of course that the magnetostatic field points either in x or z 

direction. As before, the solution for magnetic field in free space is 

assumed to be of the following form: 

(*<*• -j(k x + k   z) 
H    = \        a(k  ) e       x z       dk (4. 6) 

y    J_00        x x 

with the corresponding electric field components 

p«>      k -j(k x + k z) 
E_ = -\        77^-   a(kj e        x z       dk„     , (4. 7) 

"eo 
and 

p°°        k -j(k x + k z) 
E    = \ —f-   a(k   ) e       x z       dk      . (4. 8) 

*     J_.     "eo x x 

Inside the plasma medium,   a solution identical to the one assumed in 

Eq.   (2. 4) of Section 2 is assumed for the magnetic field as shown: 

HV=r. K jk    z ,       jk    z 
z    + c(k x) e     z 

-jk    x 
e       x     dk       .      (4. 9) 
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However,  this time it must be noted that there is a different relation between 

k     and k    ,   namely; x z J 

u\ez r0   x 

(4. 10) 

The electric field in the plasma medium is given by: 

i 
k 

x j_« we 

jk    z i        -jk   z i 
b(k   ) e       z    -  c(k   ) e x x 

-jk v
x    I 

e       x   dk (4. 11) 

and 

oo     k 

2      = \       — 
z      J w 

i        "3k    z i l,' 
b(k   ) e       z   + c(k   )   J    zz 

x x   e e dk (4. 12) 

The procedure henceforth for finding a(k ) is exactly as that in Section 

2,  and thus a detailed analysis is omitted.    The Fourier transform technique 
is used to match the boundary conditions.    As before, the continuity con- 

ditions on the electric and the magnetic fields yield Snell's law giving the 

relation,   k    = k    . 
x x 

The resulting function, a(K ),  is identical to Eq.   (2. 13) except that e x p 
is replaced by e 

x 

2!«    a sin (k    -) 
a(k ) = _ 0     | x2 

k  (k „ |) z      x 2' 

jk 1 J   z 

k zC0 cos k   1 + j -^-     sin k   1 
z  X 

(4. 13) 

t i 

From the relation   k    = k    ,  k     can be evaluated in terms of k   using Eq. 
x x       z x & 

(4. 9) to get 

u *Vx 1 - 
W VzJ 

(4. 14) 

The values of e    and e    depend on the direction of the magnetostatic field 

vector.    The relation between k   and k   is given by: 
x z 

2,2 

kz = (u,"Vo " kx  > 
(4. 15) 

Thus,   a(k ) can be expressed entirely in terms of k  . 

By applying the saddle-point method, the far-field pattern is obtained 

and is as shown below: 
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H   « N-:    k0 cos 6 a(k„ sin 6) e 
y        k0

r      ° ° 
(4. 16) 

The quantity a(k    sin 9) can be evaluated using Eq.   (4. 13) and the auxiliary 

relations in Eqs.   (4. 14) and (4. 15). 

4. 4   Results 

In the following analysis,  it is assumed that the plasma layer is lossless. 

The power pattern for the lossy case can be obtained by substituting the proper 
values of  €    and 6    into Eqs.   (4. 13),   (4. 14),   (4. 15),   and (4. 16). x z 

(a)   Magnetostatic field vector in the z direction 

When the magnetostatic field is z directed, then 

By substituting these quantities into Eq.   (4. 14) and setting k    = k    sin 9, 
x       u 

there results , 

k     = kn z       0 

2 cos 

2 
to 

9--V- 
to 

1 - 

2 

to 

(4. 17) 

The expression above shows that when —*- is greater than unity, k     is 
U « z 

always real.    However,  when _P <   1,  k     takes on either real or imaginary 

values.    Thus it is again convenient to obtain two expressions for the power 
pattern. 

Let 

= k 

2 
cos    9 

to 

i--A 

for cos 9 
to 

to 

and 

k    .  = kn zi        0 

_£- 2 
cos    9 

for cos 9 <—E-< 1 
to 

By using these relations with Eqs.   (4. 13) to (4. 16),the following expressions 
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for the normalized power pattern are obtained: 

2 

1 

kQa 
sin (—5- sin 0) 

k0a 
sin 9 2    ' cosh   k    .1+1 

zi k,. cos 9 sinh k    .1 
zi 

(4. 18) 

for 

and 

cos 9 < _P < 1 

V sin (~2~ sin 9) 

2 

1 
r koa    .   n —y- sin 9 2    ' 

cos    k      1+ zr k    cos 9 

2     T 

sin   k 

(4. 19) 

for 
real number. 

Equations (4. 13) and (4. 19) give the power pattern for the case of 

infinite magnetostatic field directed parallel to the z axis. 
The radiation patterns as function of    B are shown in Figure 5.    It is 

assumed that the slot is infinitesimally narrow.    Qualitatively the patterns 

are quite similar to those in Figure 5, the case of no magnetic field.    How- 
ever,  unlike the patterns of Figure 5, the peaks are higher for larger 

values of—£- and the normalized power is unity in the direction of the 
magnetostatic field even when—£- is greater than unity.    This latter effect 

is expected because the propagation constant in the direction of magneto- 

static field reduces to that of the free space.    The wave traveling in this direc- 

tion has its electric field polarized perpendicular to the direction of the mag- 

netostatic field.    Since the dielectric permittivity associated with the direction 
perpendicular to the magnetostatic field is e_, the wave propagates with the 

free space propagation constant. 

(b)   Magnetostatic field vector parallel to the x axis 
Now consider the case of magnetostatic field parallel to the x axis.    In 

this case, „ 

eo(1 
■-*> 

ez = £0 

By substituting these relations into Eq.   (4. 14) and setting k    = k   sin 6 
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k     = k„ cos 9 z        u 1 - 

Clearly,  k     is real when—£   < 1 and is imaginary when—E> 1 

Let 

k zr = kQ    cos 0 for —E-   < 1 

and 

k    .   = kn zi 0 cos e for—£  > 1 
CO 

10°       20°      30°      40*      50°      60°      70*      80* 

Figure 16.    Power Patterns for Various Values of—P_ with the 
Magnetostatic Field in the z Direction 

Then from Eqs.   (4. 13) to (4. 16) the following expressions for the normalized 
power pattern are obtained: 



p  = - 
n     r 

for u) 

koa 
sin (—=~ sin 9) 

kQa 
sin 9 

< 1 

 2—'  
cos    kzrl+, 

1 2    ' A~ö\ sin   k   . 1 I   \ zr w 
J 
w i~v 
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(4. 20a) 

and 

p -I 
n     r 

sin\—2~ sin 9./ 

2 

koa 
—J- sin 9 

for 

2    ' /      1 
cosh   k    .1 + / =■ \ sinh k   .1 

zi      / .  2   \ zi cd 

1   —ST 

fa) >  1   . 

(4. 20b) 

Shown in Figure 17 are the patterns with the magnetostatic field 

parallel to the x axis.    Unlike the previous cases studied,  power radiation 

is greatest along the ground plane.    In addition, the amplitude never ex- 

ceeds unity.    As expected, the normalized power radiation is unity in the 

direction of the magnetostatic field. 

Figure 17.    Power Patterns for Various Values of_£ with the 
Magnetostatic Field in the x Direction 
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Appendix 

Radiation Patterns for Plasma Layers with Losses 

(No Static Magnetic Fields) 

The power patterns for the lossy plasma layer can be derived from the 

general expressions for the transverse magnetic and electric wave cases 
[ Eqs.   (2. 22) and  (3. 12) respectively]   by allowing-^- to become complex 

in accordance with Eq.   (1. 8).    The following results are obtained after some 

algebraic manipulation: 
(A)   Transverse Magnetic Wave 

(Al) 

P    =- n     r 

sin (k_ -K sin 6) 

l0 7 sin 6 

4(A2 + B2) 
C + D + E + F 

where    —j*- = n   = A - jB 

C = e 2al (Ak   cos 9 + ß)   + (Bk0 cos 9 + 

-2ol (-BkQ cos 8 + a)2 + (Ak   cos 9 - ß)2 

■"If* 0 

E = 4 sin 201 [• ß - AB kQ
2 cos2 9 
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F = 2 cos 201 TA
2
 ,    2 A   k      co 

L 0 

a  = kQ    [(A - sin2 0)2 + B2 J    * sin y 

ß = k      |_(A - sin2 0)2 + B2 J   * cos y 

2 2        9 9 9 9 
9 + B^ kn" cos^ 6 - a    - ß' 

J k. 

y = j tan 
A - sin" 9 

(B)   Transverse Electric Wave 

(A2) 

n      V a / 

cos ; (k   TT sin 6) 

(a)    "ko   sin   e_ 
4 cos2 6 [ a2 + 021 

[ C + D + E + F] 

where 

_£  '   n    = A - jB 

C = e 

D = e 

2al (0+kQc 

■2al 
(0 - k    cos 

os 9)2+ a2\ 

9>2
+Q

2] 

E = 2(ß2 + a2 - kQ
2 cos2 9) cos 201 

F = -4 a k   cos 9 sin 201 
l 

a = k       ((A - sin2 9)2 + B2]     '   sin y 

I 

0 = kQ    [(A - sin2 9)2 + B2]    "   cos y 

Y = 2 tan B 

A - sin    9 

It should be noted that,  since B is a positive number in the notations used, 

the following relation for y holds: 

o<y< ; 
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